630.00 a
Description: scikit-learn basic functions. Representatively ML library not DL, this is defacto.
#600#ML_Libraries_and_Implementation#630#Machine_Learning_Frameworks#630.00#scikit-learn#630.00 a#scikit-learn_functions
train_test_split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
test_size ratio
random_state like seed
accuracy_score
from sklearn.metrics import accuracy_score
tree
from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier(random_state=0)
Random Forest
from sklearn.ensemble import RandomForestClassifier
X = [[0, 0], [1, 1]]
Y = [0, 1]
clf = RandomForestClassifier(n_estimators=10)
clf = clf.fit(X, Y)
Gradient Boosting
from sklearn.ensemble import GradientBoostingClassifier
model = GradientBoostingClassifier(random_state=42)
model
Performance Improvements
Data Sampling
Model Hyperparameterization
Feature Engineering
IQR = Q3 - Q1
Q3 + 1.5IQR
Q1 - 1.5IQR
make_column_transformer